

40G QSFP+ AOC Cable Specification

Features

- QSFP+ Serial Optical Interface
 - > High quality and reliability optical device and
 - Sub-assemblies
 - > 4 VCSEL Lasers for up to 150m over OM4 fiber
 - > 4 channels PIN photo detector
- QSFP+ MSA Compliant
 - > Compliant with SFF-8679 for electrical interface
 - > CAUI-4 High Speed electrical interface
 - > Compliant with SFF-8661 for mechanical interface
 - > QSFP+ Mechanical Interface for easy removal
 - > Flat, rubberized, LSZH cable
 - > Compliant with SFF-8636 for 2-wire interface for management and DDMI
- Support Protocol
 - > IEEE Std802.3bm
 - > SFF-8636
- Low Power Consumption
 - > Less than 1.5W in temperature range of 0 to 70°C

Applications

- ♦ 40G AOC Ethernet links
- Data center
- Infiniband EDR

1. General Description

AOC-Q-Q-40G is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP8 AOC for 40 Gigabit Ethernet, InfiniBand EDR Applications. This transceiver is a high-performance module for short-range multi-lane data communication and interconnect applications. It integrates four data lanes in each direction with 40Gbps bandwidth. MNC QSFP+ Active Optical Cable's length is up to 100 meters over OM3 MMF or 150 meters over OM4 MMF. These modules are designed to operate over multimode fiber systems using a nominal wavelength of 850nm. The electrical interface uses a 38-contact edge type connector.

2. Functional Description

This module is designed to operate over multimode fiber systems using a nominal wavelength of 850nm

Transmitter Operation

The module converts 4 input channels of 10Gb/s electrical data to 4 channels optical signals and then transmit them for 40Gb/s optical transmission.

Receiver Operation

The module receives a 40Gb/s optical input into 4 channels of 850nm optical signals and then converts them to 4 output channels of 10Gb/s electrical data.

Management Interface

A 2-wire interface (SCL, SDA) is used for serial ID, digital diagnostics and other control and monitor functions.

3. Absolute Maximum Ratings and Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Ts	-40	85	°C
Case Operating Temperature	Тор	0	70	°C
Relative Humidity (non-condensation)	RH	5	95	%
Supply Voltage	Vcc	-0.5	3.6	V
Input Voltage	Vin	-0.5	VCC+0.5	V

Parameter	Symbol	Min	Max	Unit
Operating Case Temperature	Торс	0	70	degC
Relative Humidity(non-condensing)	Rhop	5	85	%
Power Supply Voltage	Vcc	3.135	3.465	V
Total Power Consumption	Pc	-	1.5	W

Table 3.2 Recommended Operating Conditions

4. Electrical Specification

Table 4.1 Transmitter Interface

Parameter	Symbol	Min	Typical	Max	Unit
Center Wavelength	λc	840	850	860	nm
Data rate per lane	DR		10.3125		Gbps
Overload Differential Voltage pk-pk	TP1a	900			mV
Common Mode Voltage (Vcm)	TP1	-350		2850	mV
Differential Termination Resistance Mismatch	TP1			10%	
Differential Return Loss (SDD11)	TP1			See CEI-10G-VSR Equation 13-19	
Common Mode to Differential conversion and Differential to Common Mode conversion (SDC11, SCD11)	TP1			See CEI-10G-VSR Equation 13-20	
Stressed Input Test	TP1	See CEI-10G-VSR Section 13.3.11.2.1			

Table 4.2 Receiver Interface

Parameter	Symbol	Min	Typical	Max	Unit
Center Wavelength		840	850	860	nm
Signaling Speed	DR		10.3125		Gbps
Differential Voltage, pk-pk	TP4			900	mV
Common Mode Voltage (Vcm)	TP4	-350		2850	mV
Common Mode Noise, RMS	TP4			17.5	mV
Differential Termination Resistance Mismatch	TP4			10%	
Differential Return Loss (SDD22)	TP4			See CEI- 10G-VSR Equation 13-19	dB

5. User Interface

5.1 Management Interface

QSFP+ 2-Wire Serial Interface Protocol

QSFP+ 2-wire serial interface is specified in the SFF-8636.The QSFP+ 2-wire serial interface is used for serial ID, digital diagnostics, and certain control functions. The 2-wire serial interface is mandatory for all QSFP+ modules.

QSFP+ Management Interface

The common memory map for managed external cable interfaces is utilized for serial ID, digital monitoring and control functions. The map is arranged into a single lower page address space of 128 bytes and multiple upper address pages.

2	-Wire Serial Address 1010000x
	Lower Page 00h
0	Identifier
1- 2	Status
3- 21	Interrupt Flags
22- 33	Free Side Device Monitors
34- 81	Channel Monitors
82-85	Reserved
86- 98	Control
99	Reserved
100-104	Hardware Interrupt Pin Masks
105-106	Vendor Specific
107 Rese	erved
108-110	Free Side Device Properties
111-112	Assigned for use by PCI Express
113	Free Side Device Properties
114-118	Reserved
119-122	Password Change Entry Area
(Optiona	a1)
123-126	Password Entry Area (Optional)
127	Page Select Byte

	- +		
	Optional	Optional	Optional
Upper Page OOh	Page Olh	Page 02h	Page 03h
128 Identifier	128 CC_APPS	128-255 User EEPROM Data	128-175 Free Side Device Thresholds
129-191 Base ID Fields	129 AST Table Length (TL) 130-131 Application Code Entry 0 132-133 Application Code Entry 1 134-253 other entries		
			176-223 Channel
192-223 Extended ID	1		Thresholds
224-255 Vendor Specific ID			224 Tx EQ & Rx Emphasis Magnitude ID 225 RX output amplitude indicators 226-241 Channel Controls 242-251 Channel Monitor Masks
	254-255 Application Code Entry TL		252-255 Reserved

5.2 Memory Map in detail

Byte Address	Description	Туре
0	Identifier (1 Byte)	Read Only
1-2	Status (2 Bytes)	Read Only
3-21	Interrupt Flags (31 Bytes)	Read Only
22-33	Module Monitors (12 Bytes)	Read Only
34-81	Channel Monitors (48 Bytes)	Read Only
82-85	Reserved (4 Bytes)	Read Only
86-97	Control (12 Bytes)	Read/Write
98-99	Reserved (2 Bytes)	Read/Write
100-106	Module and Channel Masks (7 Bytes)	Read/Write
107-118	Reserved (12 Bytes)	Read/Write
119-122	Reserved (4 Bytes)	Read/Write
123-126	Reserved (4 Bytes)	Read/Write
127	Page Select Byte	Read/Write

Figure 5.2 Low Page 00H Memory Map

Byte Address	Description	Туре
128-175	Module Thresholds (48 Bytes)	Read Only
176-223	Reserved (48 Bytes)	Read Only
224-225	Reserved (2 Bytes)	Read Only
226-239	Reserved (14 Bytes)	Read/Write
240-241	Channel Controls (2 Bytes)	Read/Write
242-253	Reserved (12 Bytes)	Read/Write
254-255	Reserved (2 Bytes)	Read/Write

Figure 5.3 Upper Page 03H Memory Map

This structure permits timely access to addresses in the lower page such as interrupt flags and monitors. Less time critical entries such as serial ID information and threshold settings are available with the page select function. Data used for interrupt handling is located in Lower Page 00h to enable single block read operations for time critical data.

Upper Page 01h and Upper Page 02h are optional. Upper Page 01h allows implementation of application select table while Upper Page 02h provides a user read/write space. Implementation of these two pages is optional. Lower and Upper Page 00h are always implemented. Page 03h is required if Page 00h Byte 2 bit 2 is low. Pages 20-7Fh are reserved for future use. Writing the value of a non-supported page shall not be accepted by the transceiver. The Page Select byte shall revert to 0 and read/write operations shall be to Upper Page 00h. Pages 04-1Fh and 80-FFh are for vendor specific functions.

Page02 is user EEPROM and its format dedicated by user. The detail description of low memory and Page00.Page03 upper memory please see SFF-8636 document.

Address	Name	Description
128	Identifier (1 Byte)	Identifier Type of serial transceiver
129	Ext. Identifier (1 Byte)	Extended identifier of serial transceiver
130	Connector (1 Byte)	Code for connector type
131-138	Transceiver (8 Bytes)	Code for electronic compatibility or optical compatibility
139	Encoding (1 Byte)	Code for serial encoding algorithm
140	BR, nominal (1 Byte)	Nominal bit rate, units of 100 Mbits/s
141	Extended RateSelect Compliance (1 Byte)	Tags for Extended RateSelect compliance
142	Length SMF (1 Byte)	Link length supported for SM fiber in km
143	Length E-50 µm (1 Byte)	Link length supported for EBW 50/125 µm fiber, units of 2 m
144	Length 50 µm (1 Byte)	Link length supported for 50/125 µm fiber, units of 1 m
145	Length 62.5 µm (1 Byte)	Link length supported for 62.5/125µm fiber, units of 1 m
146	Length copper (1 Byte)	Link length supported for copper, units of 1 m
147	Device Tech (1 Byte)	Device technology
148-163	Vendor name (16 Bytes)	QSFP vendor name (ASCII)
164	Extended Transceiver (1 Byte)	Extended Transceiver Codes for InfiniBand [†]
165-167	Vendor OUI (3 Bytes)	QSFP vendor IEEE vendor company ID
168-183	Vendor PN (16 Bytes)	Part number provided by QSFP vendor (ASCII)
184-185	Vendor rev (2 Bytes)	Revision level for part number provided by vendor (ASCII)
186-187	Wavelength (2 Bytes)	Nominal laser wavelength (Wavelength = value / 20 in nm)
188-189	Wavelength Tolerance (2 Bytes)	Guaranteed range of laser wavelength (+/- value) from Nominal wavelength (Wavelength Tol. = value / 200 in nm)
190	Max Case Temp (1 Byte)	Maximum Case Temperature in Degrees C
191	CC_BASE (1 Byte)	Check code for Base ID fields (addresses 128-190)
192-195	Options (4 Bytes)	Rate Select, TX Disable, TX Fault, LOS
196-211	Vendor SN (16 Bytes)	Serial number provided by vendor (ASCII)
212-219	Date code (8 Bytes)	Vendor's manufacturing date code
220	Diagnostic Monitoring Type (1 Byte)	Indicates which type of diagnostic monitoring is implemented
221	Enhanced Options (1 Byte)	Indicates which optional enhanced features are implemented
222	Reserved (1 Byte)	Reserved
223	CC_EXT	Check code for the Extended ID Fields (addresses 192-222)
224-255	Vendor Specific (32 Bytes)	Vendor Specific EEPROM

Figure 5.4 Upper page 00H Memory Map

5.3 Digital Diagnostic Monitor Accuracy

The following characteristics are defined over recommended operating conditions.

Parameter	Accuracy	Unit
Internally measured transceiver temperature	+/-3	deg.C
Internally measured transceiver supply voltage	+/-3	%
Measured Tx bias current	+/-10	%
Measured Tx output power	+/-3	dB
Measured Rx received average optical power	+/-3	dB

Table 5.5	Digital	Diagnostic	Monitor	Accuracy
-----------	---------	------------	---------	----------

6. Pin Assignment and Description

QSFP+ Transceiver Pad Layout, host PCB QSFP+ Pinout, and PIN Descriptions are as follows:

Figure 6.1 QSFP+ Transceiver Electrical Pad Pinout

Table 6.1 Pin Description

Pin#	Name	Logic	Description	Power Seq.	Note
1	GND		Ground	₁St	1
2	Tx2n	CML-I	Transmitter Inverted Data Input	₃rd	
3	Tx2p	CML-I	Transmitter Non-Inverted Data output	₃rd	
4	GND		Ground	₁St	1
5	Tx4n	CML-I	Transmitter Inverted Data Input	₃rd	
6	Tx4p	CML-I	Transmitter Non-Inverted Data output	₃rd	
7	GND		Ground	₁St	1
8	ModSelL	LVTLL-I	Module Select	₃rd	
9	ResetL	LVTLL-I	Module Reset	₃rd	
10	VccRx		+3.3V Power Supply Receiver	2nd	2
11	SCL	LVCMOS- I/O	2-Wire Serial Interface Clock	зrd	
12	SDA	LVCMOS- I/O	2-Wire Serial Interface Data	зrd	
13	GND		Ground	₁St	1
14	Rx3p	CML-O	Receiver Non-Inverted Data Output	зrd	
15	Rx3n	CML-O	Receiver Inverted Data Output	3rd	
16	GND		Ground	₁St	1
17	Rx1p	CML-O	Receiver Non-Inverted Data Output	₃rd	
18	Rx1n	CML-O	Receiver Inverted Data Output	3rd	
19	GND		Ground	₁St	1
20	GND		Ground	1St	1
21	Rx2n	CML-O	Receiver Inverted Data Output	₃rd	
22	Rx2p	CML-O	Receiver Non-Inverted Data Output	₃rd	
23	GND		Ground	1St	1
24	Rx4n	CML-O	Receiver Inverted Data Output	₃rd	
25	Rx4p	CML-O	Receiver Non-Inverted Data Output	зrd	
26	GND		Ground	₁St	1
27	ModPrsL	LVTTL-O	Module Present	зrd	

28	IntL	LVTTL-O	Interrupt	₃rd	
29	VccTx		+3.3 V Power Supply transmitter	₂nd	2
30	Vcc1		+3.3 V Power Supply	₂nd	2
31	LPMode	LVTTL-I	Low Power Mode	₃rd	
32	GND		Ground	1St	1
33	Тх3р	CML-I	Transmitter Non-Inverted Data Input	₃rd	
34	Tx3n	CML-I	Transmitter Inverted Data Output	₃rd	
35	GND		Ground	1St	1
36	Tx1p	CML-I	Transmitter Non-Inverted Data Input	₃rd	
37	Tx1n	CML-I	Transmitter Inverted Data Output	₃rd	
38	GND		Ground	₁St	1

Notes:

1. GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Vcc Rx, Vcc1and Vcc Tx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500 mA.

7. Mechanical Dimensions

Figure 7.1 shows the package dimensions of the module. The module is designed to be complaint with QSFP+ MSA specification. Package dimensions are specified in SFF-8661.

Figure	7.1	Package	dimensions
--------	-----	---------	------------

8. Ordering Information

Part Number	Temperature Range	Distance	Fiber Type	E/O	O/E
AOC-Q-Q-40G-01	0 to 70℃	1m	MMF	VCSEL 850nm	PIN
AOC-Q-Q-40G-03	0 to 70 ℃	3m	MMF	VCSEL 850nm	PIN
AOC-Q-Q-40G-10	0 to 70 ℃	10m	MMF	VCSEL 850nm	PIN
AOC-Q-Q-40G-30	0 to 70 ℃	30m	MMF	VCSEL 850nm	PIN
AOC-Q-Q-40G-xx	0 to 70℃	xxm (Up to 100m)	MMF	VCSEL 850nm	PIN